The extent of migration of the Holliday junction is a crucial factor for gene conversion in Rhizobium etli.
نویسندگان
چکیده
Gene conversion, defined as the nonreciprocal transfer of DNA, is one result of homologous recombination. Three steps in recombination could give rise to gene conversion: (i) DNA synthesis for repair of the degraded segment, (ii) Holliday junction migration, leading to heteroduplex formation, and (iii) repair of mismatches in the heteroduplex. There are at least three proteins (RuvAB, RecG, and RadA) that participate in the second step. Their roles have been studied for homologous recombination, but evidence of their relative role in gene conversion is lacking. In this work, we showed the effect on gene conversion of mutations in ruvB, recG, and radA in Rhizobium etli, either alone or in combination, using a cointegration strategy previously developed in our laboratory. The results indicate that the RuvAB system is highly efficient for gene conversion, since its absence provokes smaller gene conversion segments than those in the wild type as well as a shift in the preferred position of conversion tracts. The RecG system possesses a dual role for gene conversion. Inactivation of recG leads to longer gene conversion tracts than those in the wild type, indicating that its activity may hinder heteroduplex extension. However, under circumstances where it is the only migration activity present (as in the ruvB radA double mutant), conversion segments can still be seen, indicating that RecG can also promote gene conversion. RadA is the least efficient system in R. etli but is still needed for the production of detectable gene conversion tracts.
منابع مشابه
Multiple recombination events maintain sequence identity among members of the nitrogenase multigene family in Rhizobium etli.
A distinctive characteristic of the Rhizobium genome is the frequent finding of reiterated sequences, which often constitute multigene families. Interestingly, these families usually maintain a high degree of nucleotide sequence identity. It is commonly assumed that apparent gene conversion between reiterated elements might lead to concerted variation among members of a multigene family. Howeve...
متن کاملMetabolic Reconstruction and Modeling of Nitrogen Fixation in Rhizobium etli
Rhizobiaceas are bacteria that fix nitrogen during symbiosis with plants. This symbiotic relationship is crucial for the nitrogen cycle, and understanding symbiotic mechanisms is a scientific challenge with direct applications in agronomy and plant development. Rhizobium etli is a bacteria which provides legumes with ammonia (among other chemical compounds), thereby stimulating plant growth. A ...
متن کاملNucleotide sequence of the Rhizobium etli nodS gene.
The complete nucleotide sequence of the nodS gene from the bean-nodulating Rhizobium etli, presumably encoding a methyltransferase, was determined. A phylogenetic analysis of five different NodS proteins from three genera of Gram- soil bacteria, Azorhizobium, Bradyrhizobium and Rhizobium, was performed.
متن کاملCloning of the rpoD analog from Rhizobium etli: sigA of R. etli is growth phase regulated.
Rhizobium bacteria fix atmospheric nitrogen during symbiosis with legume plants only after bacterial division is arrested. The role of the major vegetative sigma factor, SigA, utilized by Rhizobium bacteria during symbiosis is unknown. By using PCR technology, a portion of the sigA gene corresponding to domain II was directly amplified from Rhizobium etli total DNA by using two primers designed...
متن کاملConservation of plasmid-encoded traits among bean-nodulating Rhizobium species.
Rhizobium etli type strain CFN42 contains six plasmids. We analyzed the distribution of genetic markers from some of these plasmids in bean-nodulating strains belonging to different species (Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum, and Sinorhizobium fredii). Our results indicate that independent of geographic origin, R. etli strains usually share not onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 15 شماره
صفحات -
تاریخ انتشار 2009